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Abstract 
 

In the standard horizontal innovation model of endogenous growth, larger 
economies innovate more and grow faster. Due to the homotheticity of 
preferences, however, it does not matter whether the large market size comes 
from a large population or a high per capita expenditure. In this paper, we extend 
the standard model to allow for nonhomothetic preferences, while preserving its 
balanced growth property.  Among others, we show that, holding the size fixed, 
economies with higher per capita expenditure and smaller populations innovate 
more and grow faster (slower) in the case of increasing (decreasing) relative love 
for variety. 
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1.  Introduction 

The standard horizontal innovation models of endogenous growth—Romer (1990), 

Grossman and Helpman (1993, ch.3), Gancia and Zilibotti (2005), and Acemoglu (2008; ch.13.4) 

just to name a few—, predict that countries with larger market sizes innovate more and hence 

grow faster.  However, due to the assumption of consumer demand homotheticity, the 

composition of the aggregate demand has no effect. In particular, it does not matter whether the 

large market size comes from a larger population size or a higher per capita expenditure. Once 

the aggregate market size is controlled for, poorer countries with larger population sizes innovate 

as much as richer countries with smaller population sizes. Furthermore, without any effects of 

the demand composition, the (demand-side) market size effect becomes indistinguishable from 

the (supply-side) scale effect, for which there exists little supporting evidence. 

In this paper, we extend textbook horizontal innovation models of endogenous growth to 

allow for nonhomothetic preferences to examine the effect of the demand composition on 

innovation and growth. We consider an economy, populated by 𝑁𝑁 identical agents, each 

endowed with ℎ units of labor.1  For the preferences, we follow the footsteps of Dixit and Stiglitz 

(1977). Virtually all the existing horizontal innovation models of endogenous growth build on 

their well-known model of monopolistic competition with homothetic CES preferences in Dixit-

Stiglitz (1977; Section I). Instead, we build on their lesser-known model of monopolistic 

competition with directly explicitly additive (DEA) nonhomothetic preferences in Dixit-Stiglitz 

(1977; Section II), which contains homothetic CES as a knife-edge case.2   

A distinctive feature of monopolistic competition model with DEA is that the price 

elasticity of demand each firm faces, which inversely affects the markup rate charged by the 

firm, is a function of per capita consumption of its product only.  Furthermore, at the symmetric 

 
1Thus, ℎ measures the worker efficiency, and can be interpreted as the level of human capital or the quality of the 
labor force.  The total labor endowment of the economy is hence equal to 𝐿𝐿 =  ℎ𝑁𝑁.  With labor being the only factor 
of production, 𝐿𝐿 is also the size of the economy. 
2See also Zhelobodko et al. (2012). Although Dixit and Stiglitz (1977) called Section II “Variable Elasticity Case,” 
the well-known Bergson’s Law states that, within this class of preferences, they are homothetic if and only if they 
are CES. In other words, any departure from CES within this class introduces nonhomotheticity. Hence, one could 
equally call Section II “Nonhomothetic Case.” Of course, nonhomotheticity and non-CES are generally distinct 
properties of preferences. Indeed, it is possible to have homothetic non-CES in a broader class of symmetric 
preferences.  (It is also possible to have nonhomothetic CES if we allow for asymmetric preferences.) However, the 
demand composition effect would be absent under homothetic non-CES.  Moreover, homothetic non-CES would be 
incompatible with the balanced growth property (see footnote 3).  To put it differently, it is nonhomotheticity, not 
variable elasticity per se, that matters. What is crucial for the results in this paper is that the elasticity of substitution 
varies across indifferent curves, not along an indifferent curve.   
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equilibrium in which all products are consumed by the same amount, this price elasticity, which 

is now a function of per capita consumption of each product, is also equal to the elasticity of 

substitution between every pair of products.  Obviously, homothetic CES is a special case where 

this function is constant.  But, whenever this elasticity function is not constant, it introduces 

nonhomotheticity.  For example, if it is decreasing in per capita consumption of each product, the 

elasticity of substitution between products is smaller on higher indifferent curves, which means 

that richer consumers are more willing to pay for additional variety.  This is the case Zhelobodko 

et.al. (2012) called the case of “increasing relative love for variety (RLV).”  Alternatively, if this 

function is increasing, the elasticity of substitution between products is larger on higher 

indifferent curves, which means that richer consumers are less willing to pay for additional 

variety.  This is the case Zhelobodko et.al. (2012) called the case of “decreasing relative love for 

variety (RLV).” 

We use this class of nonhomothetic preferences, because replacing CES with DEA in the 

standard horizontal innovation model of endogenous growth does not destroy its balanced 

growth property, which we would like to preserve in order to keep our departure from the 

standard model to the minimum. The reader may be surprised that the balanced growth property 

is preserved in the presence of nonhomotheticity.  To see why, consider the case of increasing 

RLV.  For a fixed measure of the existing product variety, growing per capita real income would 

increase the per capita consumption of each product, causing the price elasticity to go down and 

the markup rate to go up. However, there is an offsetting force.  For a fixed per capita real 

income, expanding product variety would reduce the per capita consumption of each product, 

causing the price elasticity to go up and the markup rate to go down.  Along the equilibrium path, 

these two forces exactly cancel out each other, because the measure of product variety and the 

per capita real income grow at the same rate, so that the per capita consumption of each product 

stays constant. Consequently, the price elasticity and the markup rate stay constant, preserving 

the balanced growth property.3 

Here are our main results.  First, after controlling for the size 𝐿𝐿 =  ℎ𝑁𝑁, a richer country 

with a smaller population (a higher ℎ with a smaller 𝑁𝑁) innovates more and hence grows faster 

 
3This also explains why the balanced growth property cannot be preserved under homothetic non-CES.  Under 
homotheticity, growing per capita real income cannot affect the markup rate.  Furthermore, the price elasticity of 
demand for each product can depend solely on the measure of the existing variety in a symmetric setting.  Thus, 
expanding variety would have to change the price elasticity along the equilibrium path. 
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under increasing RLV.  Under decreasing RLV, the effect goes in the opposite direction.  Hence, 

the composition of the aggregate demand matters, and the demand-side market size effect can be 

distinguished from the supply-side scale effect.  Second, even though both the markup rate 

charged by the firms and the innovation (and growth) rate stay constant over time along the 

balanced growth path, they are both endogenous. Thus, they could either be positively or 

negatively correlated as a change in the parameters shifts the balanced growth path.  We show 

under increasing RLV that the markup and innovation rates move in the same direction if 

changes are caused by exogenous variations in production cost or per capita expenditure, while 

they move in the opposite directions if changes are caused by variations in the discount rate, the 

innovation cost or the population size. This implies, in particular, that the measure of 

competitiveness and the growth rate are positively correlated in cross-sections of countries, if 

countries differ mostly in the innovation (or firm entry) cost. 

It should be noted that the (demand-side) market size effect on innovation and growth we 

study is conceptually distinct from the (supply-side) scale effect, whose empirical validity has 

been questioned by Jones (1995) and many others.  Nonhomotheticity provides one natural way 

of distinguishing these two effects.4 Indeed, our results suggest that the difference in per capita 

income across countries could potentially be one reason why there is little supporting evidence 

for the scale effect.  We also show that correlations between competition and growth across 

countries depend on the sources of variations across countries.  As such, our results suggest that 

horizontal innovation models of growth can also contribute to the debate regarding competition 

and growth. 

Some recent studies have explored the role of the demand composition on innovation 

under nonhomotheticity.  See, e.g., Fajgelbaum, Grossman, and Helpman (2011), Foellmi and 

Zweimueller (2006), Latzer (2018), and Matsuyama (2019a).  All these studies, however, 

consider the type of nonhomotheticity, where higher per capita real income causes the demand 

composition to shift away from low income elastic products/sectors toward high income elastic 

products/sectors.  Here, we instead focus on the type of nonhomotheticity, under which per 

capita real income affects the consumer’s willingness to pay for innovation.  For this reason, we 

 
4 An alternative approach to distinguish the two has been pursued in the directed technological change literature, 
using multi-sector, multi-factor extensions of endogenous growth models, see, e.g., Acemoglu (2008, ch.15) and 
Gancia and Zilibotti (2009). 
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consider a one-sector model, where all products enter symmetrically in preferences, and hence 

products do not differ in their income elasticity.  To the best of our knowledge, this paper is the 

first to investigate the role of this type of nonhomotheticity in the balanced growth framework. 

Finally, two of us have previously investigated the implications of departing from CES 

preferences on the markup and growth rates in a model of horizontal innovation in Boucekkine 

et. al. (2017).  However, that model is too restrictive to study the effect of the demand 

composition.  Moreover, even though the balanced growth path exists in that model, the 

equilibrium path may differ from the balanced growth path.  

 

2. Back to the Basics: Innovation and Growth under CES 

We start with a benchmark balanced growth model with homothetic CES, which 

encompasses two versions of the textbook models (Grossman and Helpman, 1993; Gancia and 

Zilibotti, 2005) in order to facilitate comparisons with our model with DEA preferences. 

2.1. Intratemporal problem 

Labor is the only factor of production. We consider an economy populated by 𝑁𝑁 identical 

agents, each supplying inelastically ℎ units of labor measured in efficiency units. Hence, the total 

labor supply measured in efficiency units is 𝐿𝐿 =  ℎ𝑁𝑁, which is also the size of the economy. 

Time is continuous and extends from 𝑡𝑡 = 0 to infinity.  Intertemporal preferences of each 

agent take the following form:  

𝒰𝒰0 = ∫ 𝑙𝑙𝑙𝑙𝑙𝑙�𝑈𝑈(𝐱𝐱𝑡𝑡)�𝑒𝑒−𝜌𝜌𝑡𝑡
∞
0 𝑑𝑑𝑡𝑡, 

where 𝑈𝑈(𝐱𝐱𝑡𝑡) is the intratemporal utility, 𝐱𝐱𝑡𝑡 = {𝑥𝑥𝑡𝑡(𝜔𝜔);  𝜔𝜔 ∈ [0,𝑉𝑉𝑡𝑡]} is the consumption profile, 

with 𝑉𝑉𝑡𝑡 being the range of the products that have been innovated by time t, and 𝑥𝑥𝑡𝑡(𝜔𝜔) denoting 

the consumption of product 𝜔𝜔 ∈ [0,𝑉𝑉𝑡𝑡].   

At time 𝑡𝑡, each agent earns a wage income equal to 𝑤𝑤𝑡𝑡ℎ, and spends 𝐸𝐸𝑡𝑡, and chooses 𝐱𝐱𝑡𝑡 to 

maximize 𝑈𝑈(𝐱𝐱𝑡𝑡) subject to the intratemporal budget constraint,  

 
� 𝑝𝑝𝑡𝑡(𝜔𝜔)𝑥𝑥𝑡𝑡(𝜔𝜔)𝑑𝑑𝜔𝜔
𝑉𝑉𝑡𝑡

0
= 𝐸𝐸𝑡𝑡 , 

(1) 

where 𝑝𝑝𝑡𝑡(𝜔𝜔) denotes the price of product 𝜔𝜔 ∈ [0,𝑉𝑉𝑡𝑡].   When 𝑈𝑈(𝐱𝐱𝑡𝑡) is a CES with the elasticity 

of substitution 𝜎𝜎 > 1: 

 
𝑈𝑈(𝐱𝐱𝑡𝑡) = � �𝑥𝑥𝑡𝑡(𝜔𝜔)�1−

1
𝜎𝜎𝑑𝑑𝜔𝜔

𝑉𝑉𝑡𝑡

0
, 

 



  

6 
 

this intratemporal maximization problem yields the per capita demand curve for each product: 

 
𝑥𝑥𝑡𝑡(𝜔𝜔) =

[𝑝𝑝𝑡𝑡(𝜔𝜔)]−𝜎𝜎

 (𝑃𝑃𝑡𝑡)1−𝜎𝜎 
𝐸𝐸𝑡𝑡 , 

(2) 

with the price elasticity being constant and equal to 𝜎𝜎 > 1, where 

(𝑃𝑃𝑡𝑡)1−𝜎𝜎 ≡ � [𝑝𝑝𝑡𝑡(𝜔𝜔′)]1−𝜎𝜎𝑑𝑑𝜔𝜔′
𝑉𝑉𝑡𝑡

0
. 

The total demand for product 𝜔𝜔 is simply given by 𝑞𝑞𝑡𝑡(𝜔𝜔) = 𝑁𝑁𝑥𝑥𝑡𝑡(𝜔𝜔). 

 

2.2. Firms’ intratemporal problem 

Each product 𝜔𝜔 ∈ [0,𝑉𝑉𝑡𝑡] is produced and sold exclusively by a single firm, which is also 

indexed by 𝜔𝜔 ∈ [0,𝑉𝑉𝑡𝑡].  Producing one unit of each product requires 𝜓𝜓𝑡𝑡 efficiency units of labor.  

Each firm chooses its price, 𝑝𝑝𝑡𝑡(𝜔𝜔) or the quantity, 𝑞𝑞𝑡𝑡(𝜔𝜔) = 𝑁𝑁𝑥𝑥𝑡𝑡(𝜔𝜔), to maximize the profit, 

𝜋𝜋𝑡𝑡(𝜔𝜔) ≡ (𝑝𝑝𝑡𝑡(𝜔𝜔) − 𝑤𝑤𝑡𝑡𝜓𝜓𝑡𝑡)𝑞𝑞𝑡𝑡(𝜔𝜔) = (𝑝𝑝𝑡𝑡(𝜔𝜔) − 𝑤𝑤𝑡𝑡𝜓𝜓𝑡𝑡)𝑁𝑁𝑥𝑥𝑡𝑡(𝜔𝜔) 

subject to eq.(2) taking 𝑤𝑤𝑡𝑡 ,𝜓𝜓𝑡𝑡 ,𝑃𝑃𝑡𝑡, and 𝐸𝐸𝑡𝑡 as given.  This profit maximization problem has a 

unique solution, and hence all firms adopt the same pricing rule: 

𝑝𝑝𝑡𝑡(𝜔𝜔) �1 −
1
𝜎𝜎�

= 𝑤𝑤𝑡𝑡𝜓𝜓𝑡𝑡 ⟺ 𝑝𝑝𝑡𝑡(𝜔𝜔) = 𝑀𝑀𝑤𝑤𝑡𝑡𝜓𝜓𝑡𝑡 ≡ 𝑝𝑝𝑡𝑡 , 

where 𝑀𝑀 ≡ 𝜎𝜎 (𝜎𝜎 − 1)⁄   is the markup rate, which is exogenously constant under CES. 

Because all firms set the same price, firm symmetry entails that all products are produced 

and consumed by the same amount, and all firms earn the same level of profits: 

𝑞𝑞𝑡𝑡(𝜔𝜔) = 𝑁𝑁𝑥𝑥𝑡𝑡(𝜔𝜔) = 𝑁𝑁𝑥𝑥𝑡𝑡 = 𝑞𝑞𝑡𝑡; 𝜋𝜋𝑡𝑡(𝜔𝜔) = 𝜋𝜋𝑡𝑡 

and the intratemporal budget constraint, eq.(1), becomes simplified to: 

𝑝𝑝𝑡𝑡𝑥𝑥𝑡𝑡𝑉𝑉𝑡𝑡 = 𝐸𝐸𝑡𝑡 . 

The above mark-up rule also implies that the share of the aggregate expenditure that goes 

to the firms’ profits is also exogenously constant and given by: 

 𝜋𝜋𝑡𝑡𝑉𝑉𝑡𝑡
𝑁𝑁𝐸𝐸𝑡𝑡

=
(𝑝𝑝𝑡𝑡 − 𝑤𝑤𝑡𝑡𝜓𝜓𝑡𝑡)𝑞𝑞𝑡𝑡𝑉𝑉𝑡𝑡

𝑝𝑝𝑡𝑡𝑞𝑞𝑡𝑡𝑉𝑉𝑡𝑡
=
𝑝𝑝𝑡𝑡 − 𝑤𝑤𝑡𝑡𝜓𝜓𝑡𝑡

𝑝𝑝𝑡𝑡
=

1
𝜎𝜎

 
(3) 

Likewise, the share of the aggregate expenditure that goes to the wage payment in the production 

sector is also exogenously constant, and given by: 

 𝑤𝑤𝑡𝑡 𝐿𝐿𝑋𝑋𝑡𝑡
𝑁𝑁𝐸𝐸𝑡𝑡

= 1 −
1
𝜎𝜎

=
1
𝑀𝑀

 (4) 

where 𝐿𝐿𝑋𝑋𝑡𝑡 = 𝜓𝜓𝑡𝑡𝑞𝑞𝑡𝑡𝑉𝑉𝑡𝑡 = 𝜓𝜓𝑡𝑡𝑁𝑁𝑥𝑥𝑡𝑡𝑉𝑉𝑡𝑡 denotes the total number of efficiency units of labor employed 

in the production of the existing products. 
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2.3. R&D and resource constraints 

Because firms are symmetric, the market value of each firm is the same and equal to 

𝐵𝐵𝑡𝑡 ≡ ∫ 𝜋𝜋𝑠𝑠𝑒𝑒−(𝑅𝑅𝑠𝑠−𝑅𝑅𝑡𝑡)∞
𝑡𝑡 𝑑𝑑𝑑𝑑, where 𝑅𝑅𝑠𝑠 ≡ ∫ 𝑟𝑟𝜏𝜏𝑑𝑑𝑑𝑑

𝑠𝑠
0  is the cumulative interest rate and 𝑟𝑟𝜏𝜏 is the 

instantaneous one. Log-differentiating this expression of 𝐵𝐵𝑡𝑡 with respect to t, we obtain:  

 �̇�𝐵𝑡𝑡 + 𝜋𝜋𝑡𝑡
𝐵𝐵𝑡𝑡

= 𝑟𝑟𝑡𝑡 . 
(5) 

 Innovating per unit of new products requires 𝐹𝐹𝑡𝑡 efficiency units of labor:  

𝐹𝐹𝑡𝑡�̇�𝑉𝑡𝑡 = 𝐿𝐿𝑅𝑅𝑡𝑡 , 

where 𝐿𝐿𝑅𝑅𝑡𝑡 is the number of units of labor being employed in the R&D sector at time 𝑡𝑡.  There is 

free entry in the R&D sector.  Hence, whenever the R&D sector is active, net returns from R&D, 

𝐵𝐵𝑡𝑡�̇�𝑉𝑡𝑡 − 𝑤𝑤𝑡𝑡𝐿𝐿𝑅𝑅𝑡𝑡 = (𝐵𝐵𝑡𝑡 − 𝑤𝑤𝑡𝑡𝐹𝐹𝑡𝑡)�̇�𝑉𝑡𝑡 , are equal to zero, which means that the cost of creating a 

product (the R&D cost) and the value of creating a product (the value of a firm) are equalized: 

 𝐵𝐵𝑡𝑡 = 𝑤𝑤𝑡𝑡𝐹𝐹𝑡𝑡. (6) 
Finally, the labor resource constraint, or the labor market equilibrium condition, is given by: 

 ℎ𝑁𝑁 = 𝐿𝐿 = 𝐿𝐿𝑅𝑅𝑡𝑡 + 𝐿𝐿𝑋𝑋𝑡𝑡 = 𝐹𝐹𝑡𝑡�̇�𝑉𝑡𝑡 + 𝜓𝜓𝑡𝑡𝑁𝑁𝑥𝑥𝑡𝑡𝑉𝑉𝑡𝑡 . (7) 
 

2.4.  Intertemporal problem 

To describe the intertemporal maximization problem of the agent, we first derive the 

intertemporal budget constraint. Each agent holds 1/𝑁𝑁 fraction of the ownership shares of the 

profit-making firms, hence their asset holding is 𝑎𝑎𝑡𝑡 = 𝐵𝐵𝑡𝑡𝑉𝑉𝑡𝑡/𝑁𝑁. At time 𝑡𝑡, an agent earns the 

wage income 𝑤𝑤𝑡𝑡ℎ and the profit income 𝜋𝜋𝑡𝑡𝑉𝑉𝑡𝑡/𝑁𝑁, spends 𝐸𝐸𝑡𝑡 = 𝑝𝑝𝑡𝑡𝑥𝑥𝑡𝑡𝑉𝑉𝑡𝑡 and purchases assets (the 

ownership shares of the new profit-making firms) by 𝐵𝐵𝑡𝑡𝑉𝑉�̇�𝑡/𝑁𝑁.  The flow budget constraint is 

hence: 

𝐵𝐵𝑡𝑡𝑉𝑉�̇�𝑡 𝑁𝑁⁄ + 𝐸𝐸𝑡𝑡 = 𝑤𝑤𝑡𝑡ℎ + 𝜋𝜋𝑡𝑡𝑉𝑉𝑡𝑡 𝑁𝑁⁄  

By adding the capital gains 𝐵𝐵�̇�𝑡𝑉𝑉𝑡𝑡 𝑁𝑁⁄  on both sides, and using eq.(5) and the fact that 𝑎𝑎𝑡𝑡 =

𝐵𝐵𝑡𝑡𝑉𝑉𝑡𝑡/𝑁𝑁, the above expression can be written as: 

𝑎𝑎�̇�𝑡 + 𝐸𝐸𝑡𝑡 = 𝑤𝑤𝑡𝑡ℎ + 𝑟𝑟𝑡𝑡𝑎𝑎𝑡𝑡 

By integrating this expression from 𝑡𝑡 = 0 to infinity, we obtain the intertemporal budget 

constraint: 

 
� 𝐸𝐸𝑡𝑡𝑒𝑒−𝑅𝑅𝑡𝑡𝑑𝑑𝑡𝑡
∞

0
≤ 𝑎𝑎0 + � 𝑤𝑤𝑡𝑡ℎ𝑒𝑒−𝑅𝑅𝑡𝑡𝑑𝑑𝑡𝑡

∞

0
, 

(8) 
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with the no-Ponzi scheme condition, lim
𝑡𝑡⟶∞

𝑎𝑎𝑡𝑡𝑒𝑒−𝑅𝑅𝑡𝑡 ≥ 0.  Subject to this intertemporal budget 

constraint, eq.(8), agents choose an expenditure path, {𝐸𝐸𝑡𝑡}𝑡𝑡=0∞ , so as to maximize: 

𝒰𝒰0 = � 𝑙𝑙𝑙𝑙𝑙𝑙�𝑈𝑈(𝐱𝐱𝑡𝑡)�𝑒𝑒−𝜌𝜌𝑡𝑡𝑑𝑑𝑡𝑡
∞

0
= � 𝑙𝑙𝑙𝑙𝑙𝑙 �𝑉𝑉𝑡𝑡(𝑥𝑥𝑡𝑡)

1−1𝜎𝜎� 𝑒𝑒−𝜌𝜌𝑡𝑡𝑑𝑑𝑡𝑡
∞

0
= � 𝑙𝑙𝑙𝑙𝑙𝑙�𝑉𝑉𝑡𝑡 �

𝐸𝐸𝑡𝑡
𝑝𝑝𝑡𝑡𝑉𝑉𝑡𝑡

�
1−1𝜎𝜎

� 𝑒𝑒−𝜌𝜌𝑡𝑡𝑑𝑑𝑡𝑡
∞

0
. 

The first-order condition is given by  
1
𝐸𝐸𝑡𝑡
𝑒𝑒−𝜌𝜌𝑡𝑡 = 𝜆𝜆0𝑒𝑒−𝑅𝑅𝑡𝑡 , 

where 𝜆𝜆0 is the Lagrange multiplier associated with eq.(8).  Log-differentiating this first-order 

condition with respect to 𝑡𝑡 leads to the familiar Euler equation: 

 �̇�𝐸𝑡𝑡
𝐸𝐸𝑡𝑡

= 𝑟𝑟𝑡𝑡 − 𝜌𝜌. 
(9) 

 

2.5.  The Balanced Growth Path 

The balanced growth path (BGP) is defined as an equilibrium path satisfying the 

following three conditions: 

i) The growth rate of the range of products 𝑙𝑙𝑡𝑡 ≡ �̇�𝑉𝑡𝑡 𝑉𝑉𝑡𝑡⁄  is constant and positive. 

ii) The allocation of labor between the production and R&D sectors is constant: 𝐿𝐿𝑋𝑋𝑡𝑡 = 𝐿𝐿𝑋𝑋∗  

and 𝐿𝐿𝑅𝑅𝑡𝑡 = 𝐿𝐿𝑅𝑅∗ . 

iii) The markup rate, ≡ 𝜎𝜎 (𝜎𝜎 − 1)⁄  , is constant, satisfied automatically under CES. 

To guarantee the existence of such a BGP, we follow Grossman and Helpman (1993) and 

Gancia and Zilibotti (2005) and many others by assuming that knowledge spillovers from past 

R&D experiences reduce the cost of R&D as follows: 

 𝐹𝐹𝑡𝑡 =
𝐹𝐹
𝑉𝑉𝑡𝑡

, (10) 

which implies that 𝐿𝐿𝑅𝑅𝑡𝑡 = 𝐹𝐹𝑡𝑡�̇�𝑉𝑡𝑡 = 𝐹𝐹𝑙𝑙𝑡𝑡. 

Regarding the production cost, 𝜓𝜓𝑡𝑡, Grossman and Helpman (1993) assume 𝜓𝜓𝑡𝑡 = 𝜓𝜓 so 

that knowledge spillovers are limited to R&D.  In contrast, Gancia and Zilibotti (2005) assume 

𝜓𝜓𝑡𝑡 =  𝜓𝜓/𝑉𝑉𝑡𝑡  so that they benefit both R&D and production equally.  As will become clear below, 

however, neither of these assumptions play any role in ensuring the existence of a BGP under 

CES, so we intentionally leave 𝜓𝜓𝑡𝑡 unspecified in this section. 
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We now derive the law of motion for this economy under the assumption that the R&D 

sector is active: 𝐿𝐿𝑅𝑅𝑡𝑡 = 𝐹𝐹𝑡𝑡�̇�𝑉𝑡𝑡 = 𝐹𝐹𝑙𝑙𝑡𝑡 > 0.  By inserting eq.(5) into the Euler equation, eq.(9), we 

obtain 

�̇�𝐸𝑡𝑡
𝐸𝐸𝑡𝑡

=
�̇�𝐵𝑡𝑡 + 𝜋𝜋𝑡𝑡
𝐵𝐵𝑡𝑡

− 𝜌𝜌. 

Using eqs. (3), (6) and (10), this can be written as  

�̇�𝐸𝑡𝑡
𝐸𝐸𝑡𝑡

=
�̇�𝑤𝑡𝑡
𝑤𝑤𝑡𝑡

− 𝑙𝑙𝑡𝑡 +
𝑁𝑁
𝜎𝜎𝐹𝐹

𝐸𝐸𝑡𝑡
𝑤𝑤𝑡𝑡

− 𝜌𝜌. 

By defining ℰ𝑡𝑡 ≡ 𝑁𝑁𝐸𝐸𝑡𝑡 𝑤𝑤𝑡𝑡⁄ , this can be simplified to: 

 ℰ̇𝑡𝑡
ℰ𝑡𝑡

=
ℰ𝑡𝑡
𝜎𝜎𝐹𝐹

− 𝑙𝑙𝑡𝑡 − 𝜌𝜌, 
(11) 

while the labor market equilibrium condition eq.(7) becomes, using eq.(4): 

 𝐿𝐿 = 𝐿𝐿𝑅𝑅𝑡𝑡 + 𝐿𝐿𝑋𝑋𝑡𝑡 = 𝐹𝐹𝑙𝑙𝑡𝑡 + �1 −
1
𝜎𝜎�

ℰ𝑡𝑡 . 
(12) 

By combining eq.(11) and eq.(12), we obtain the law of motion for ℰ𝑡𝑡: 

 ℰ̇𝑡𝑡
ℰ𝑡𝑡

=
ℰ𝑡𝑡 − ℰ∗

𝐹𝐹
, where ℰ∗ ≡ 𝐿𝐿 + 𝜌𝜌𝐹𝐹. 

(13) 

Since ℰ̇𝑡𝑡 > 0 for ℰ𝑡𝑡 > ℰ∗ and ℰ̇𝑡𝑡 < 0 for ℰ𝑡𝑡 < ℰ∗, eq.(13) would imply divergence, leading to a 

violation of the equilibrium conditions, unless the economy jumps immediately to ℰ0 = ℰ∗ and 

stays at ℰ𝑡𝑡 = ℰ∗.  This in turns implies 𝐿𝐿𝑋𝑋𝑡𝑡 = (1 − 1 𝜎𝜎⁄ )ℰ∗ ≡ 𝐿𝐿𝑋𝑋∗  and  𝐿𝐿𝑅𝑅𝑡𝑡 = 𝐹𝐹𝑙𝑙𝑡𝑡 = 𝐿𝐿 − 𝐿𝐿𝑋𝑋∗  are 

all constant along the only equilibrium path and the economy stays on the balanced growth path, 

as long as the parameters are such that the R&D sector is active: 𝐿𝐿𝑅𝑅∗ = 𝐿𝐿 − 𝐿𝐿𝑋𝑋∗ = 𝐿𝐿 −

(1 − 1 𝜎𝜎⁄ )ℰ∗ > 0 ⟺ 𝑀𝑀 ≡ 𝜎𝜎 (𝜎𝜎 − 1)⁄ >  1 + 𝜌𝜌𝐹𝐹 𝐿𝐿⁄ .  Hence, we have: 

Proposition 1A: Balanced Growth Path under CES 

Suppose 𝑀𝑀 ≡ 𝜎𝜎 (𝜎𝜎 − 1)⁄ >  1 + 𝜌𝜌𝐹𝐹 𝐿𝐿⁄ .  Then, the economy jumps immediately to the 

balanced growth path along which 

𝐿𝐿𝑋𝑋𝑡𝑡 = 𝐿𝐿𝑋𝑋∗ = �1 −
1
𝜎𝜎�

(𝐿𝐿 + 𝜌𝜌𝐹𝐹) =
𝐿𝐿 + 𝜌𝜌𝐹𝐹
𝑀𝑀

< 𝐿𝐿; 

𝐿𝐿𝑅𝑅𝑡𝑡 = 𝐿𝐿𝑅𝑅∗ =
𝐿𝐿
𝜎𝜎
− �1 −

1
𝜎𝜎�

𝜌𝜌𝐹𝐹 =  �1 −
1
𝑀𝑀�

𝐿𝐿 −
𝜌𝜌𝐹𝐹
𝑀𝑀

> 0; 

𝑙𝑙𝑡𝑡 = 𝑙𝑙∗ =
𝐿𝐿
𝜎𝜎𝐹𝐹

− �1 −
1
𝜎𝜎�

𝜌𝜌 = �1 −
1
𝑀𝑀�

𝐿𝐿
𝐹𝐹
−
𝜌𝜌
𝑀𝑀

> 0. 

 



  

10 
 

From Proposition 1A, one could immediately show 

Proposition 1B: Comparative statics under CES 

In the benchmark CES case, 

i) Both an increase in the discount rate 𝜌𝜌 and in the R&D cost 𝐹𝐹 leave the markup rate 𝑀𝑀 

unchanged, increase 𝐿𝐿𝑋𝑋∗ , decrease 𝐿𝐿𝑅𝑅∗ , and decrease the growth rate 𝑙𝑙∗; 

ii) An increase in the total labor supply 𝐿𝐿 =  ℎ𝑁𝑁 leaves the markup rate M unchanged, 

and increases 𝐿𝐿𝑋𝑋∗ , 𝐿𝐿𝑅𝑅∗ , and 𝑙𝑙∗; 

iii) An increase in the elasticity of substitution 𝜎𝜎 decreases the markup rate 𝑀𝑀, increases 

𝐿𝐿𝑋𝑋∗ , and decreases 𝐿𝐿𝑅𝑅∗ , and 𝑙𝑙∗. 

 

Three features of these results under CES deserve special emphasis.  First, the per capita 

labor endowment ℎ and the population size 𝑁𝑁 enter in the law of motion for ℰ𝑡𝑡, eq.(13), as well 

as the expressions for 𝐿𝐿𝑅𝑅∗ = 𝐿𝐿 − 𝐿𝐿𝑋𝑋∗  and 𝑙𝑙∗ only through their product 𝐿𝐿 =  ℎ𝑁𝑁.  In short, what 

matters is the aggregate market size, not its composition.  Once the country size, 𝐿𝐿 = ℎ𝑁𝑁, is 

controlled for, a richer country with a higher ℎ and a lower 𝑁𝑁 innovates as much as a poorer 

country with a lower ℎ and a higher 𝑁𝑁.  This also implies that the (demand-side) market size 

effect is indistinguishable from the (supply-side) scale effect.  This property is due to the 

homotheticity of preferences and does not hold under nonhomothetic preferences.  Second, the 

production cost, 𝜓𝜓𝑡𝑡, has no effect on the aggregate dynamics.  This neutrality of 𝜓𝜓𝑡𝑡 is due to the 

exogeneity of the markup rate, which depends solely on the preference parameter 𝜎𝜎. Thus, the 

share of the aggregate expenditure accruing to the firms’ profits never change when the 

production cost changes.  Hence, the production cost never affects incentive to innovate, and 

hence it has no impact on the labor allocation between the production and R&D sectors.  This is 

the reason why we left it unspecified in this section.5  Again, this feature will disappear as we 

depart from CES.  Third, the markup rate changes only with a variation in 𝜎𝜎, which leads to a 

positive correlation between the markup and growth rates.  This result is at odds with some 

empirical evidence suggesting that competition fosters innovation and growth, if we use the 

markup rate as an inverse measure of competition, as commonly done. 

 
5Note however that the time path of 𝜓𝜓𝑡𝑡 affects that of 𝑥𝑥𝑡𝑡 (and hence the welfare), because 𝐿𝐿𝑋𝑋∗ = 𝜓𝜓𝑡𝑡𝑁𝑁𝑥𝑥𝑡𝑡𝑉𝑉𝑡𝑡. For 
example, if we assume 𝜓𝜓𝑡𝑡 = 𝜓𝜓, as in Grossman and Helpman (1993), 𝑥𝑥𝑡𝑡 must shrink at the rate equal to 𝑙𝑙∗, so that 
𝑥𝑥𝑡𝑡𝑉𝑉𝑡𝑡 stays constant. Instead, if we assume 𝜓𝜓𝑡𝑡 = 𝜓𝜓/𝑉𝑉𝑡𝑡, as in Gancia and Zilibotti (2005), 𝑥𝑥𝑡𝑡 stays constant. 
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3.   Innovation and Growth under Directly Explicitly Additive (DEA) Preferences 

We now depart from CES preferences and consider a broader class of DEA preferences, 

which admits CES as a knife-edge case. 

3.1. Intratemporal problem 

The intratemporal preferences satisfy direct explicit additivity (DEA)6 if the direct utility 

function is explicitly additive: 

𝑈𝑈(𝐱𝐱𝑡𝑡) ≡ � 𝑢𝑢(𝑥𝑥𝑡𝑡(𝜔𝜔))𝑑𝑑𝜔𝜔,
𝑉𝑉𝑡𝑡

0
 

where the sub-utility function, 𝑢𝑢(∙), satisfies 𝑢𝑢(0) = 0, 𝑢𝑢′(𝑥𝑥) > 0, and 𝑢𝑢"(𝑥𝑥) < 0. For a 

technical reason, it is assumed to be thrice-differentiable.  The agents maximize this 

intratemporal utility subject to their intratemporal budget constraint, eq.(1), which yields the 

inverse demand curve for each product; 

 
𝑝𝑝𝑡𝑡(𝜔𝜔) =

𝑢𝑢′�𝑥𝑥𝑡𝑡(𝜔𝜔)�𝐸𝐸𝑡𝑡
Δ𝑡𝑡

 , 
(14) 

where 

Δ𝑡𝑡 ≡ � 𝑢𝑢′�𝑥𝑥𝑡𝑡(𝜔𝜔′)�𝑥𝑥𝑡𝑡(𝜔𝜔′)𝑑𝑑𝜔𝜔′
𝑉𝑉𝑡𝑡

0
 

captures the effects of the competing firms in the market. 

The firms choose 𝑝𝑝𝑡𝑡(𝜔𝜔) or 𝑞𝑞𝑡𝑡(𝜔𝜔) = 𝑁𝑁𝑥𝑥𝑡𝑡(𝜔𝜔) to maximize the profit 𝜋𝜋𝑡𝑡(𝜔𝜔) =

(𝑝𝑝𝑡𝑡(𝜔𝜔) − 𝑤𝑤𝑡𝑡𝜓𝜓𝑡𝑡)𝑁𝑁𝑥𝑥𝑡𝑡(𝜔𝜔) subject to eq.(14), taking 𝑤𝑤𝑡𝑡 ,𝜓𝜓𝑡𝑡 ,Δ𝑡𝑡, and 𝐸𝐸𝑡𝑡 as given, which yields the 

pricing rule: 

𝑢𝑢′�𝑥𝑥𝑡𝑡(𝜔𝜔)�𝐸𝐸𝑡𝑡
Δ𝑡𝑡

�1 −
1

𝜎𝜎�𝑥𝑥𝑡𝑡(𝜔𝜔)�
� = 𝑝𝑝𝑡𝑡(𝜔𝜔)�1 −

1
𝜎𝜎�𝑥𝑥𝑡𝑡(𝜔𝜔)�

� = 𝑤𝑤𝑡𝑡𝜓𝜓𝑡𝑡,  

or 

  𝑢𝑢′�𝑥𝑥𝑡𝑡(𝜔𝜔)�𝐸𝐸𝑡𝑡
𝑀𝑀�𝑥𝑥𝑡𝑡(𝜔𝜔)�Δ𝑡𝑡

= 𝑤𝑤𝑡𝑡𝜓𝜓𝑡𝑡 ,  
(15) 

where  

 
6Even though this class of preferences is often referred to simply as “additive,” this term fails to distinguish it from 
other types of additivity, such as indirect explicit additivity, direct implicit additivity, and indirect implicit additivity, 
which form different classes of preferences; see Matsuyama (2019b: Appendix A).  Hence, we prefer to call it direct 
explicit additivity (DEA) to be precise. 
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𝜎𝜎(𝑥𝑥) ≡ −
𝑢𝑢′(𝑥𝑥)
𝑥𝑥𝑢𝑢”(𝑥𝑥) > 1 

is the price elasticity, and 𝑀𝑀(𝑥𝑥) ≡ 𝜎𝜎(𝑥𝑥) [𝜎𝜎(𝑥𝑥) − 1]⁄ > 1 is the markup rate.7 

A distinctive feature of monopolistic competition under DEA is that the price elasticity of 

demand each firm faces, 𝜎𝜎(𝑥𝑥), is a function of per capita consumption of its product and nothing 

else.  Notice that, for any differentiable price elasticity function 𝜎𝜎(∙) > 1, one could define the 

sub-utility function as 𝑢𝑢(𝑥𝑥) = ∫ 𝑒𝑒𝑥𝑥𝑝𝑝 �−∫ 𝑑𝑑𝑠𝑠
𝑠𝑠𝜎𝜎(𝑠𝑠)

𝑦𝑦
𝑦𝑦0

� 𝑑𝑑𝑑𝑑𝑥𝑥
0 , which satisfies 𝑢𝑢(0) = 0; 𝑢𝑢′(𝑥𝑥) > 0, 

𝑢𝑢"(𝑥𝑥) < 0, and is thrice-differentiable.  Hence, one could also use the price elasticity function 

𝜎𝜎(∙) as the primitive of the DEA preferences.  Clearly, CES is a special case, where 𝜎𝜎(𝑥𝑥) = 𝜎𝜎 >

1 ⟺  𝑢𝑢(𝑥𝑥) = 𝐴𝐴(𝑥𝑥)1−
1
𝜎𝜎, with 𝐴𝐴 being a positive constant. 

In what follows, we restrict ourselves to the subclass of DEA preferences that satisfy the 

following assumption: 

 

(D1): 

 

1
𝜎𝜎(𝑥𝑥) +

𝑥𝑥𝑀𝑀′(𝑥𝑥)
𝑀𝑀(𝑥𝑥) > 0. 

 

This inequality is equivalent to assuming that 𝑢𝑢′(𝑥𝑥) 𝑀𝑀(𝑥𝑥)⁄  is decreasing in 𝑥𝑥.  In words, the 

firm’s marginal revenue, the LHS of eq.(15), is decreasing in 𝑥𝑥𝑡𝑡(𝜔𝜔).  Hence, eq.(15) has a 

unique solution, 𝑥𝑥𝑡𝑡(𝜔𝜔) = 𝑥𝑥𝑡𝑡, which is decreasing in 𝑤𝑤𝑡𝑡𝜓𝜓𝑡𝑡Δ𝑡𝑡/𝐸𝐸𝑡𝑡.  This implies the symmetry of 

equilibrium across firms and products, 𝑝𝑝𝑡𝑡(𝜔𝜔) = 𝑝𝑝𝑡𝑡, 𝑞𝑞𝑡𝑡(𝜔𝜔) = 𝑞𝑞𝑡𝑡, and 𝜋𝜋𝑡𝑡(𝜔𝜔) = 𝜋𝜋𝑡𝑡.  Furthermore, 

(D1) ensures that the balanced growth path is the only equilibrium path of the economy: see 

Proposition 2A below. 

In addition, we introduce the following two alternative conditions. 

(D2): 𝜎𝜎′(𝑥𝑥) < 0 ⟺𝑀𝑀′(𝑥𝑥) > 0.  

 

In words, this condition states that the demand for each product becomes more price elastic as 

one moves up along the demand curve, eq.(14), (i.e., for a higher price/a lower quantity), which 

is sometimes called “Marshall’s Second Law of Demand”.  (D2) is also equivalent to stating that 

the elasticity of substitution between any two products, 𝜔𝜔1and 𝜔𝜔2 evaluated at 𝑥𝑥(𝜔𝜔1) =

 
7Without the condition, 𝜎𝜎(𝑥𝑥) > 1, the firm’s profit-maximization problem, its pricing rule, eq.(15), and its markup 
rate, 𝑀𝑀(𝑥𝑥) > 1 would not be well-defined.  It is equivalent to assuming that the firm’s revenue, 𝑝𝑝𝑡𝑡(𝜔𝜔)𝑞𝑞𝑡𝑡(𝜔𝜔) =
𝑢𝑢′�𝑥𝑥𝑡𝑡(𝜔𝜔)�𝑥𝑥𝑡𝑡(𝜔𝜔)(𝑁𝑁𝐸𝐸𝑡𝑡 Δ𝑡𝑡⁄ ) is increasing in 𝑥𝑥𝑡𝑡(𝜔𝜔), and hence its marginal revenue, the LHS of eq.(15), is positive. 
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𝑥𝑥(𝜔𝜔2) = 𝑥𝑥 is decreasing in 𝑥𝑥, or increasing “relative love for variety” (RLV) to use the 

terminology of Zhelobodkho et.al. (2012).8  Note that (D2) implies (D1), but not the other way 

around.  More specifically, under the following condition, 

(D3): 1
𝜎𝜎(𝑥𝑥) > −

𝑥𝑥𝑀𝑀′(𝑥𝑥)
𝑀𝑀(𝑥𝑥) > 0. 

 

(D1) holds, and yet the opposite of (D2) holds.  Thus, (D3) implies a violation of Marshall’s 

Second Law of Demand and decreasing RLV.  Obviously, CES is a borderline case between the 

two subclasses of DEA satisfying (D2) or (D3).  

Whether (D2) or (D3) holds plays a crucial role in the comparative static results in 

Proposition 2B below.  It is thus important to understand its empirical implications.  Note that 

(D1) implies that the unique solution of eq.(15), 𝑥𝑥𝑡𝑡(𝜔𝜔), is strictly decreasing in 𝜓𝜓𝑡𝑡Δ𝑡𝑡.  We can 

thus show: 

i) Imperfect Pass-Through: A higher production cost, 𝜓𝜓𝑡𝑡, reduces 𝑥𝑥𝑡𝑡(𝜔𝜔).  This leads to a 

lower markup rate, 𝑀𝑀�𝑥𝑥𝑡𝑡(𝜔𝜔)� under (D2); 

ii) Strategic Complementarity in Pricing, If the competitors reduced their prices and 

increased their sales, Δ𝑡𝑡 would go up, which would reduce 𝑥𝑥𝑡𝑡(𝜔𝜔).  This would lead to a 

lower markup rate, 𝑀𝑀�𝑥𝑥𝑡𝑡(𝜔𝜔)�, and a lower price, 𝑝𝑝𝑡𝑡(𝜔𝜔) under (D2); 

iii) Procompetitive Entry; The presence of more firms, an exogenous increase in  𝑉𝑉𝑡𝑡, would 

lead to a higher Δ𝑡𝑡, which would reduce 𝑥𝑥𝑡𝑡(𝜔𝜔).  This would lead to a lower markup, 

𝑀𝑀�𝑥𝑥𝑡𝑡(𝜔𝜔)� under (D2).   

Now, suppose instead that (D3) holds. Then, a decline in 𝑥𝑥𝑡𝑡(𝜔𝜔), caused by an increase in 𝜓𝜓𝑡𝑡 or 

Δ𝑡𝑡 , would lead to an increase in 𝑀𝑀�𝑥𝑥𝑡𝑡(𝜔𝜔)� with 𝑀𝑀′(𝑥𝑥) < 0.  Thus, it would imply more than 

100% pass-through, strategic substitutes in pricing, and anti-competitive entry.  As discussed in 

Latzer, Matsuyama, and Parenti (2019), the empirical evidence is generally in support of 

imperfect pass-through, strategic complementarity in pricing, and procompetitive entry, which 

suggests that (D2) might be the more empirically relevant case.  However, for the sake of 

completeness, we will discuss the implications of both (D2) and (D3) below.9 

 
8Zhelobodkho et.al. (2012) called the inverse of 𝜎𝜎(∙) “relative love for variety (RLV).”  
9It is worth noting that, in other classes of non-CES preferences, assuming Marshall’s Second Law of Demand does 
not necessarily imply strategic complementarity in pricing or procompetitive entry.  For example, in a class of 
preferences used in Boucekkine et.al. (2017), the pricing rule of each firm is independent of the pricing behaviors of 
other firms or the number of firms competing.  
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Because (D1) ensures the symmetry of equilibrium, the pricing rule now becomes  

 𝑝𝑝𝑡𝑡 �1 −
1

𝜎𝜎(𝑥𝑥𝑡𝑡)
� = 𝑤𝑤𝑡𝑡𝜓𝜓𝑡𝑡 ⟺ 𝑝𝑝𝑡𝑡 = 𝑀𝑀(𝑥𝑥𝑡𝑡)𝑤𝑤𝑡𝑡𝜓𝜓𝑡𝑡. 

 

Using this expression, and following the same steps as in the CES case, the profit share in the 

aggregate expenditure, eq.(3) now becomes 

 𝜋𝜋𝑡𝑡𝑉𝑉𝑡𝑡
𝑁𝑁𝐸𝐸𝑡𝑡

=
1

𝜎𝜎(𝑥𝑥𝑡𝑡)
≡ 1 −

1
𝑀𝑀(𝑥𝑥𝑡𝑡)

 , (16) 

while the share of the wage payment to the production sector in the aggregate expenditure, eq.(4) 

becomes 

 𝑤𝑤𝑡𝑡 𝐿𝐿𝑋𝑋𝑡𝑡
𝑁𝑁𝐸𝐸𝑡𝑡

= 1 −
1

𝜎𝜎(𝑥𝑥𝑡𝑡)
≡

1
𝑀𝑀(𝑥𝑥𝑡𝑡)

 .  

Note that departing from CES to DEA does not change the relations between these shares and the 

markup rate.  However, these shares are endogenous under DEA, because the markup rate is a 

function of per capita consumption of each product, which is increasing under (D2) and 

decreasing under (D3). 

 

3.2.  Intertemporal problem 

Under DEA, the intertemporal utility is now given by 

𝒰𝒰0 = � 𝑙𝑙𝑙𝑙𝑙𝑙 �𝑉𝑉𝑡𝑡𝑢𝑢 �
𝐸𝐸𝑡𝑡
𝑝𝑝𝑡𝑡𝑉𝑉𝑡𝑡

�� 𝑒𝑒−𝜌𝜌𝑡𝑡
∞

0
𝑑𝑑𝑡𝑡, 

which agents maximize subject to the intertemporal budget constraint eq.(8).  This leads to the 

first-order condition given by  

𝜁𝜁(𝑥𝑥𝑡𝑡)
𝐸𝐸𝑡𝑡

𝑒𝑒−𝜌𝜌𝑡𝑡 = 𝜆𝜆0𝑒𝑒−𝑅𝑅𝑡𝑡 , 

where 𝜁𝜁(𝑥𝑥) ≡ 𝑢𝑢′(𝑥𝑥)𝑥𝑥 𝑢𝑢(𝑥𝑥)⁄ > 0, while 𝜆𝜆0 is again the Lagrange multiplier associated with 

eq.(8).  Log-differentiating this first-order condition with respect to 𝑡𝑡 yields an augmented Euler 

equation,  

 �̇�𝐸𝑡𝑡
𝐸𝐸𝑡𝑡

= 𝑟𝑟𝑡𝑡 − 𝜌𝜌 +
𝜁𝜁̇(𝑥𝑥𝑡𝑡)
𝜁𝜁(𝑥𝑥𝑡𝑡)

= 𝑟𝑟𝑡𝑡 − 𝜌𝜌 + �1 −
1

𝜎𝜎(𝑥𝑥𝑡𝑡)
− 𝜁𝜁(𝑥𝑥𝑡𝑡)�

𝑥𝑥�̇�𝑡
𝑥𝑥𝑡𝑡

, 
(17) 

which features an additional term, which is absent in the original Euler equation, eq.(9).10 

 

 
10 For CES, 𝜎𝜎(𝑥𝑥𝑡𝑡) = 𝜎𝜎 and 𝜁𝜁(𝑥𝑥𝑡𝑡) = 1 − 1 𝜎𝜎⁄ , so that the last term disappears. 
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3.3.  Balanced Growth Path 

Following the same definition for the BGP as before, a constant markup rate requires that 

𝑥𝑥𝑡𝑡 must be constant. Furthermore, from 𝐿𝐿𝑋𝑋𝑡𝑡 = 𝜓𝜓𝑡𝑡𝑁𝑁𝑥𝑥𝑡𝑡𝑉𝑉𝑡𝑡 , a constant 𝑥𝑥𝑡𝑡 and a constant 𝐿𝐿𝑋𝑋𝑡𝑡 requires 

that 𝜓𝜓𝑡𝑡𝑉𝑉𝑡𝑡 , must be constant. Thus, in order to ensure the existence of a BGP, it is now necessary 

to assume along Gancia and Zilibotti (2005) that knowledge spillovers improve productivity not 

only in R&D but also in production, as 𝜓𝜓𝑡𝑡 = 𝜓𝜓/𝑉𝑉𝑡𝑡.11 

Again, we derive the law of motion for the economy. Following the same steps as in the 

CES case, but noticing that the augmented Euler equation, eq.(17) now has the additional term, 

eq.(11) is now modified to: 

ℰ̇𝑡𝑡
ℰ𝑡𝑡

=
ℰ𝑡𝑡

𝜎𝜎(𝑥𝑥𝑡𝑡)𝐹𝐹
− 𝑙𝑙𝑡𝑡 − 𝜌𝜌 + �1 −

1
𝜎𝜎(𝑥𝑥𝑡𝑡)

− 𝜁𝜁(𝑥𝑥𝑡𝑡)�
𝑥𝑥�̇�𝑡
𝑥𝑥𝑡𝑡

, 

while eq.(12) is modified to  

𝐿𝐿 = 𝐿𝐿𝑅𝑅𝑡𝑡 + 𝐿𝐿𝑋𝑋𝑡𝑡 = 𝐹𝐹𝑙𝑙𝑡𝑡 + 𝜓𝜓𝑁𝑁𝑥𝑥𝑡𝑡 . 

Combining these two equations, and using eq.(16), ℰ𝑡𝑡 ≡ 𝑁𝑁𝐸𝐸𝑡𝑡 𝑤𝑤𝑡𝑡⁄ = 𝑁𝑁𝜓𝜓𝑥𝑥𝑡𝑡𝑀𝑀(𝑥𝑥𝑡𝑡), we obtain the 

following law of motion for 𝑥𝑥𝑡𝑡: 

 
�𝜁𝜁(𝑥𝑥𝑡𝑡) +

1
𝜎𝜎(𝑥𝑥𝑡𝑡)

+
𝑥𝑥𝑡𝑡𝑀𝑀′(𝑥𝑥𝑡𝑡)
𝑀𝑀(𝑥𝑥𝑡𝑡)

�
𝑥𝑥�̇�𝑡
𝑥𝑥𝑡𝑡

=
𝑁𝑁𝜓𝜓𝑥𝑥𝑡𝑡𝑀𝑀(𝑥𝑥𝑡𝑡) − (𝐿𝐿 + 𝜌𝜌𝐹𝐹)

𝐹𝐹
. 

(18) 

(D1) implies that the bracket term in front of  𝑥𝑥�̇�𝑡 𝑥𝑥𝑡𝑡⁄  on the LHS of eq.(18) is positive.  (D1) also 

implies that 𝑥𝑥𝑡𝑡𝑀𝑀(𝑥𝑥𝑡𝑡) is increasing in 𝑥𝑥𝑡𝑡.  Thus, �̇�𝑥𝑡𝑡 > 0 for 𝑥𝑥𝑡𝑡 > 𝑥𝑥∗ and �̇�𝑥𝑡𝑡 < 0 for 𝑥𝑥𝑡𝑡 < 𝑥𝑥∗, 

where 𝑥𝑥∗ is defined implicitly by  

 
𝑥𝑥∗𝑀𝑀(𝑥𝑥∗) =

𝐿𝐿 + 𝜌𝜌𝐹𝐹
𝑁𝑁𝜓𝜓

=
ℎ + 𝜌𝜌𝐹𝐹 𝑁𝑁⁄

𝜓𝜓
. 

(19) 

Thus, eq.(18) would imply divergence, leading to a violation of the equilibrium conditions, 

unless the economy jumps immediately to 𝑥𝑥0 = 𝑥𝑥∗ and stays at 𝑥𝑥𝑡𝑡 = 𝑥𝑥∗. This in turns implies 

𝐿𝐿𝑋𝑋𝑡𝑡 = 𝜓𝜓𝑁𝑁𝑥𝑥∗ and 𝐿𝐿𝑅𝑅𝑡𝑡 = 𝐹𝐹𝑙𝑙𝑡𝑡 =  𝐿𝐿 − 𝐿𝐿𝑋𝑋𝑡𝑡 = 𝐿𝐿 − 𝜓𝜓𝑁𝑁𝑥𝑥∗ are all constant along the only equilibrium 

path and the economy stays on the balanced growth path, as long as the parameters are such that 

the R&D sector is active:  𝐿𝐿𝑅𝑅𝑡𝑡 = 𝐹𝐹𝑙𝑙𝑡𝑡 = 𝐿𝐿 − 𝜓𝜓𝑁𝑁𝑥𝑥∗ = 𝑁𝑁(ℎ − 𝜓𝜓𝑥𝑥∗) > 0.  Since (D1) implies that 

the LHS of eq.(19) is increasing in 𝑥𝑥∗, this condition can be written as 𝑀𝑀(ℎ/𝜓𝜓) > 1 + 𝜌𝜌𝐹𝐹/𝐿𝐿.  

Hence, we have: 

 

 
11This assumption has been made in other horizontal innovation models of endogenous growth, such as Foellmi and 
Zweimuller (2006). Note also that it is isomorphic to assuming that 𝐹𝐹𝑡𝑡 = 𝐹𝐹,𝜓𝜓𝑡𝑡 = 𝜓𝜓, and ℎ𝑡𝑡 = ℎ𝑉𝑉𝑡𝑡. 
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Proposition 2A: Balanced Growth Path under DEA with (D1) 

Suppose 𝑀𝑀(ℎ/𝜓𝜓) > 1 + 𝜌𝜌𝐹𝐹/𝐿𝐿. Then, the economy jumps immediately to the balanced growth 

path along which 

𝐿𝐿𝑋𝑋𝑡𝑡 = 𝐿𝐿𝑋𝑋∗ = �1 −
1

𝜎𝜎(𝑥𝑥∗)�
(𝐿𝐿 + 𝜌𝜌𝐹𝐹) =

𝐿𝐿 + 𝜌𝜌𝐹𝐹
𝑀𝑀(𝑥𝑥∗)

< 𝐿𝐿; 

𝐿𝐿𝑅𝑅𝑡𝑡 = 𝐿𝐿𝑅𝑅∗ =
𝐿𝐿

𝜎𝜎(𝑥𝑥∗)
− �1 −

1
𝜎𝜎(𝑥𝑥∗)�

𝜌𝜌𝐹𝐹 =  �1 −
1

𝑀𝑀(𝑥𝑥∗)�
𝐿𝐿 −

𝜌𝜌𝐹𝐹
𝑀𝑀(𝑥𝑥∗)

> 0; 

𝑙𝑙𝑡𝑡 = 𝑙𝑙∗ =
𝐿𝐿

𝜎𝜎(𝑥𝑥∗)𝐹𝐹
− �1 −

1
𝜎𝜎(𝑥𝑥∗)�

𝜌𝜌 = �1 −
1

𝑀𝑀(𝑥𝑥∗)�
𝐿𝐿
𝐹𝐹
−

𝜌𝜌
𝑀𝑀(𝑥𝑥∗)

> 0, 

where 𝑥𝑥∗ is defined implicitly by eq.(19). 

Note that this proposition requires (D1), but neither (D2) nor (D3).  Note also that, by comparing 

Proposition 1A and Proposition 2A, departing from CES to DEA does not alter the functional 

relations between 𝐿𝐿𝑋𝑋∗ , 𝐿𝐿𝑅𝑅∗ , 𝑙𝑙∗on one hand and 𝜎𝜎(𝑥𝑥∗) and 𝑀𝑀(𝑥𝑥∗) on the other hand.  The only but 

significant difference is that, under DEA, the parameters, 𝜌𝜌,𝐹𝐹,ℎ,𝑁𝑁, and 𝜓𝜓 affect 𝜎𝜎(𝑥𝑥∗) and 

𝑀𝑀(𝑥𝑥∗) through eq.(19). 

From Proposition 2A, it is straightforward to conduct the comparative statics both under 

(D2) and under (D3).  The following proposition shows the case of (D2).  

Proposition 2B: Comparative Statics under DEA with (D2)  

Under DEA preferences with (D2), 

i) Both an increase in the discount rate 𝜌𝜌 and in the R&D cost 𝐹𝐹 increase per capita per 

product consumption  𝑥𝑥∗ and the markup rate 𝑀𝑀(𝑥𝑥∗), increase 𝐿𝐿𝑋𝑋∗ , and decrease 𝐿𝐿𝑅𝑅∗  and 

the growth rate 𝑙𝑙∗; 

ii) An increase in the population size 𝑁𝑁 decreases 𝑥𝑥∗and 𝑀𝑀(𝑥𝑥∗), increases 𝐿𝐿𝑋𝑋∗ , 𝐿𝐿𝑅𝑅∗ , and  𝑙𝑙∗; 

iii) An increase in per capita labor endowment ℎ increases 𝑥𝑥∗ and 𝑀𝑀(𝑥𝑥∗), increases 𝐿𝐿𝑋𝑋∗ , 𝐿𝐿𝑅𝑅∗ , 

and 𝑙𝑙∗; 

iv) Both an increase in 𝑁𝑁 (a decrease in ℎ) for a fixed ℎ𝑁𝑁 = 𝐿𝐿, and an increase in 𝜓𝜓 

decrease 𝑥𝑥∗and 𝑀𝑀(𝑥𝑥∗), increase 𝐿𝐿𝑋𝑋∗ , and decrease 𝐿𝐿𝑅𝑅∗  and 𝑙𝑙∗. 

In the interest of saving space, we do not present the comparative statics results under (D3) as a 

proposition.   However, Table summarizes the comparative statics results both under (D2) and 

under (D3).   The signs in the shaded boxes are the consequences of (D2).  Under (D3) instead, 

the signs would be opposite in the shaded boxes.  Under the borderline case of CES, they would 

be “0”. 
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Table: Comparative Statics under DEA under (D2)* 
 

 𝑥𝑥∗ 𝑀𝑀(𝑥𝑥∗) 𝐿𝐿𝑋𝑋∗ = 𝜓𝜓𝑁𝑁𝑥𝑥∗ 𝐿𝐿𝑅𝑅∗  𝑙𝑙∗ = 𝐿𝐿𝑅𝑅∗ /𝐹𝐹 
𝜌𝜌 ↑ + + + − − 
𝐹𝐹 ↑ + + + − − 
𝑁𝑁 ↑ − − + + + 
ℎ ↑ + + + + + 

𝑁𝑁 = 𝐿𝐿/ℎ ↑ , fixed 𝐿𝐿 − − + − − 
𝜓𝜓 ↑ − − + − − 

*The signs in the shaded boxes would be the opposite under (D3) and “0” under CES. 
 

 

An immediate corollary of Proposition 2B is: 

Corollary: Correlations between the Markup and Growth Rates under DEA with (D2) 

Under DEA preferences with (D2), 

v) A change in the discount rate 𝜌𝜌,  the R&D cost 𝐹𝐹, or the population size 𝑁𝑁 causes the 

markup rate 𝑀𝑀(𝑥𝑥∗) and the growth rate 𝑙𝑙∗ to move in the opposite direction. 

vi) A change in per capita labor endowment ℎ  or the production cost 𝜓𝜓 causes the markup 

rate 𝑀𝑀(𝑥𝑥∗) and the growth rate 𝑙𝑙∗to move in the same direction. 

 

We now discuss the implications of departing from CES within DEA in the direction of 

(D2), by comparing Proposition 1B with Proposition 2B and its corollary. 

Just as in CES, both an increase in 𝜌𝜌 and in 𝐹𝐹 discourage R&D, which causes the 

reallocation of labor from the R&D sector to the production sector.  This causes an increase in 

𝑥𝑥∗, per capita consumption of each product.  Unlike in CES, this increases the markup rate 

𝑀𝑀(𝑥𝑥∗) under (D2).  This secondary effect mitigates the impact on labor reallocation, but not 

enough to overturn it.  However, this causes the negative correlations between the markup rate 

𝑀𝑀(𝑥𝑥∗) and the innovation and growth rate, 𝑙𝑙∗.   In particular, this implies that the measure of 

competitiveness and the growth rate are positively correlated in cross-section of countries, if 

countries differ mostly in the innovation (or firm entry) cost.  

Just as in CES, both an increase in 𝑁𝑁 and in ℎ, by increasing the total labor supply, lead 

to an increase in the labor supply to both the production and the R&D sectors.  The latter leads to 

an increase in the growth rate, due to the familiar scale effect.  However, as seen in eq.(19), they 
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have opposite impacts on 𝑥𝑥∗ and hence on 𝑀𝑀(𝑥𝑥∗) under (D2).  A higher 𝑁𝑁 leads to a lower 𝑥𝑥∗, 

which in turn leads to a lower 𝑀𝑀(𝑥𝑥∗) under (D2), mitigating the effect on the growth rate as well 

as generating the negative correlations between 𝑀𝑀(𝑥𝑥∗) and 𝑙𝑙∗.  In contrast, a higher ℎ leads to a 

higher 𝑥𝑥∗, which in turn leads to a higher 𝑀𝑀(𝑥𝑥∗) under (D2), amplifying the effect on the growth 

rate as well as generating the positive correlations. 

To see such differential effects of changes in ℎ and in 𝑁𝑁 more clearly, consider the effect 

of increasing 𝑁𝑁 and decreasing ℎ simultaneously to keep the total labor supply 𝐿𝐿 = ℎ𝑁𝑁 

unchanged.  This removes the scale effect.  Without a change in 𝐿𝐿, an increase in 𝑁𝑁 would 

necessitate a decline in per capita consumption of each product.  This would have no impact on 

the markup rate and the allocation of labor between the production and R&D sectors under CES.   

However, under (D2), this causes the markup rate to decline, reducing the incentive to innovate, 

which causes the reallocation of labor from the R&D sector to the production sector, and a 

decline in the innovation and growth rates. This result suggests that, once the aggregate market 

size is controlled for, richer countries with smaller population sizes innovate more and hence 

grow faster than poorer countries with larger population sizes.     

Indeed, this effect of an increase in 𝑁𝑁 without an increase in 𝐿𝐿 is completely isomorphic 

to the effect of an increase in 𝜓𝜓, as clearly seen from eq.(19).  Without a change in 𝐿𝐿, a higher 𝜓𝜓, 

just like a higher 𝑁𝑁, necessitates per capita consumption of each product to decline.  This change 

would be neutral under CES. Under (D2), however, it leads to a decline in the markup rate 

through imperfect pass-through, which discourages R&D, causing labor to reallocate to the 

production sector and the growth rate to decline. 

It is worth pointing out that, though Proposition 2A does not require (D2), the 

comparative statics results reported in Proposition 2B and its corollary depend on (D2).  As 

already discussed, the signs in the shaded boxes in Table would be reversed if we instead depart 

from CES in the direction of (D3).  

 

4. Concluding Remarks 

In the standard horizontal innovation model of endogenous growth, larger economies 

innovate more and hence grow faster.  Due to the homotheticity of consumer demands, however, 

it does not matter whether the large market size comes from a large population or a high per 

capita expenditure. In this paper, we extended the standard textbook model by building on the 
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Dixit-Stiglitz (1977; Section II) model of monopolistic competition with directly explicitly 

additive (DEA) nonhomothetic preferences.  The model preserves the balanced growth property 

of the standard model in spite of nonhomotheticity.   

Among others, it has been shown that, once the aggregate market size is controlled for, 

richer countries with smaller populations innovate more and grow faster under the (empirically 

more relevant) case of “increasing relative love for variety”, which suggests that the difference in 

per capita income across countries could potentially be one reason why there is little supporting 

evidence for the scale effect.  It has also been shown that the correlations between the markup 

and growth rates across the balanced growth paths could be either positive or negative, 

depending on the source of variations.  In particular, the measure of competitiveness and the 

growth rate are positively correlated in cross-sections of countries, if countries differ mostly in 

the innovation (or firm entry) cost. 
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